Highest vectors of representations (total 10) ; the vectors are over the primal subalgebra. | \(-h_{4}+h_{1}\) | \(-h_{3}+h_{2}\) | \(g_{7}\) | \(g_{5}\) | \(g_{3}\) | \(g_{2}\) | \(g_{10}\) | \(g_{9}\) | \(g_{8}\) | \(g_{6}\) |
weight | \(0\) | \(0\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{2}\) | \(\omega_{2}\) | \(2\omega_{1}\) | \(\omega_{1}+\omega_{2}\) | \(\omega_{1}+\omega_{2}\) | \(2\omega_{2}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(0\) | \(\omega_{1}-4\psi_{1}-2\psi_{2}\) | \(\omega_{1}+4\psi_{1}+2\psi_{2}\) | \(\omega_{2}-6\psi_{1}+2\psi_{2}\) | \(\omega_{2}+6\psi_{1}-2\psi_{2}\) | \(2\omega_{1}\) | \(\omega_{1}+\omega_{2}+2\psi_{1}-4\psi_{2}\) | \(\omega_{1}+\omega_{2}-2\psi_{1}+4\psi_{2}\) | \(2\omega_{2}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0, 0, 0) | \(\displaystyle V_{\omega_{1}-4\psi_{1}-2\psi_{2}} \) → (1, 0, -4, -2) | \(\displaystyle V_{\omega_{1}+4\psi_{1}+2\psi_{2}} \) → (1, 0, 4, 2) | \(\displaystyle V_{\omega_{2}-6\psi_{1}+2\psi_{2}} \) → (0, 1, -6, 2) | \(\displaystyle V_{\omega_{2}+6\psi_{1}-2\psi_{2}} \) → (0, 1, 6, -2) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0, 0) | \(\displaystyle V_{\omega_{1}+\omega_{2}+2\psi_{1}-4\psi_{2}} \) → (1, 1, 2, -4) | \(\displaystyle V_{\omega_{1}+\omega_{2}-2\psi_{1}+4\psi_{2}} \) → (1, 1, -2, 4) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2, 0, 0) | ||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | ||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
|
|
|
| Semisimple subalgebra component.
|
|
| Semisimple subalgebra component.
| ||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{2}\) \(-\omega_{2}\) | \(\omega_{2}\) \(-\omega_{2}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | ||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(\omega_{1}-4\psi_{1}-2\psi_{2}\) \(-\omega_{1}-4\psi_{1}-2\psi_{2}\) | \(\omega_{1}+4\psi_{1}+2\psi_{2}\) \(-\omega_{1}+4\psi_{1}+2\psi_{2}\) | \(\omega_{2}-6\psi_{1}+2\psi_{2}\) \(-\omega_{2}-6\psi_{1}+2\psi_{2}\) | \(\omega_{2}+6\psi_{1}-2\psi_{2}\) \(-\omega_{2}+6\psi_{1}-2\psi_{2}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(\omega_{1}+\omega_{2}+2\psi_{1}-4\psi_{2}\) \(-\omega_{1}+\omega_{2}+2\psi_{1}-4\psi_{2}\) \(\omega_{1}-\omega_{2}+2\psi_{1}-4\psi_{2}\) \(-\omega_{1}-\omega_{2}+2\psi_{1}-4\psi_{2}\) | \(\omega_{1}+\omega_{2}-2\psi_{1}+4\psi_{2}\) \(-\omega_{1}+\omega_{2}-2\psi_{1}+4\psi_{2}\) \(\omega_{1}-\omega_{2}-2\psi_{1}+4\psi_{2}\) \(-\omega_{1}-\omega_{2}-2\psi_{1}+4\psi_{2}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | ||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{\omega_{1}-4\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}-4\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+4\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}+4\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{\omega_{2}-6\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{2}-6\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{\omega_{2}+6\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{2}+6\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}+2\psi_{1}-4\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}+2\psi_{1}-4\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}+2\psi_{1}-4\psi_{2}} \oplus M_{-\omega_{1}-\omega_{2}+2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}-2\psi_{1}+4\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}-2\psi_{1}+4\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-2\psi_{1}+4\psi_{2}} \oplus M_{-\omega_{1}-\omega_{2}-2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | ||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle 2M_{0}\) | \(\displaystyle M_{\omega_{1}-4\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}-4\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+4\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}+4\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{\omega_{2}-6\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{2}-6\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{\omega_{2}+6\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{2}+6\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}+2\psi_{1}-4\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}+2\psi_{1}-4\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}+2\psi_{1}-4\psi_{2}} \oplus M_{-\omega_{1}-\omega_{2}+2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}-2\psi_{1}+4\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}-2\psi_{1}+4\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-2\psi_{1}+4\psi_{2}} \oplus M_{-\omega_{1}-\omega_{2}-2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) |